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An Efficient Finite Element Method
for Nonconvex Waveguide Based on

Hermitian Polynomials

MOSHE ISRAEL, MEMBER, IEEE, AND RUTH MINIOWITZ

Abstract —An efficient finite element method (FEM.) in waveguide

analysis is described. The method rises Hermitian polynomials to inter-

polate the field compohent (Ez or Hz) and some of its derivatives at the

nodal points, rather than the field components, as in the Lagrangian

interpolation case. Element matrices, for a standard triangle, are given for

third- and fifth-degree Herrnitian polynomials. The appropriate transfor-

mations that relate the element matrices of a generaf tiangle to the

standard triangle element have been derived. Compared to the broadfy used

Lagrangian interpolation FEM, the Hernsitian FEM has the following

advantages

1) a significant reduction of the matrix order needed to compute the

eigenvahses and eigenfunction%

2) smooth axial components (E, or Hz) and continuous transverse field

components;

3) low-cost refinement of the mesh near nonconvex corners of the

waveguide.

These advantages are illustrated by comparing the FEM, with Hermitian

polynomials solution, to other solutions for rectangular and ridged wave-

guides.

1. INTRODUCTION

I N DESIGNING waveguide devices, it is helpful to

know the complete eigenvalue spectrum and the corre-

sponding field solution. There are several approaches to

solve waveguide problems (see, for example, [1]–[4]). The

finite element method (FEM) [4] is a versatile method that

we consider in this paper.

The first-order polynomial FEM is a broadly used

method [3]. However, the method is uneconomical for

accurate field computation requirements; consequently,

most works using first-order polynomials concentrate on

finding the eigenvalue spectrum, rather than the modal

field. In contrast, the high-order Lagrangian polynomials

FEM for triangular elements [4, pp. 88-90], when applied

to convex waveguides, leads to substantial saving in com-

puter storage and time. However, when sharp corners exist,

the field singularities at these corners cause difficulties in

obtaining a rapidly converging solution. In fact, numerical

experiments relating to singularities in transmission lines

[7] indicate that when the triangular mesh is refined, the

convergence is only marginally improved for the higher

order polynomials. Although the variational analysis given
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in [1] is efficient in the singular case, the analysis described

there is specific to ridged waveguides. Unlike the varia-

tional analysis, the FEM has the advantage of being ap-

propriate to an arbitrary waveguide shape.

In this paper we elaborate on the Herrnitian polynomials

and demonstrate their usefulness as far as efficiency is

concerned. The efficiency mainly sterns from the continu-

it y requirements, not only on the function E, or Hz, as in

the Lagrangian case, but also on the first- and possibly

second-order derivatives. In fact, these requirements re-

duce the order of the matrix eigenvalpe problem. With this

reduction, one is able to work with higher order polynomi-

als with a cost similar to that of Lagrangian lower order

polynomials. ,As an example [5, p. 85] if we consider a

square which has been partitioned into 2 n 2 right-angle

triangles, the matrix order corresponding to Lagrangian

third-degree polynomials is about 9n 2. An interpolation

with third-degree Hermitian polynomials which imposes

continuous first-order derivatives at the nodes reduces the

order to about 5n 2, but gives an error similar to the case

with Lagrangian third-order polynomials. If we use re-

duced fifth-order Herrnitian polynomials and require first

and second continuous derivatives, the resulting matrix

order is approximately only about 6n 2. This significant

reduction in the number of free parameters allows working

with high-order polynomials when grid refinements are

necessary, as in the case of sharp comers. The use of

fifth-degree Hermitian polynomials has the additional ad-

vantage that it is possible to find am approximate solution

which belongs to Cl. This fact will cause the field compo-

nents to be continuous and the fiend lines to be smooth.

In comparison to the advantages mentioned, the disad-

vantage when using Herrnitian polynomials is the incon-

venience in the rather lengthy mathematical expressions

involved. The problem of performing the appropriate in-

tegrations of these expressions over a single triangle is a

discouraging stage. To overcome this difficulty, we have

performed the integrations analytically for a standard tri-

angle for third- and fifth-degree polynomials. The results

are tabulated in Appendix II. We have also derived simple

transformations that express the required information on a

general triangle in terms of the standard triangle. Using

these transformations and tables, the FEM with Hermitiart

polynomials is easily and effectively implemented.
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II. VARIATIONAL FORMULATION

The axial field components in propagating modes

of a uniform, perfeetly conducting waveguide satisfy the

Helmholtz equation

(V’+k;)ti=o (1)

where k~ is the cutoff wavenumber,

a’ 82
v’=— —

dx’ + ay’

and ii stands for the axial field components E, or HZ for

TM or TE modes, respectively.
For TE modes, (1) is subject to Neumann boundary

conditions, and for TM modes it is subject to Dirichlet

boundary conditions. The FEM uses a variational formula-

tion in which the functional

is stationary.

While the Dirichlet boundary conditions should be im-

posed on the trial function, ii, the Neumann boundary

conditions are natural and it should not necessarily be

imposed.

We construct an approximate solution that can be writ-

ten as follows:

(3)

This solution is a combination of trial functions B,(x, Y);

the ~,’s

solution

If one

are parameters representing the values” of the

and its derivatives at mesh points.

substitutes (3) into (2), one obtains

Denoting by ~ the column vector of the values ~, (4) can

be written in matrix form as follows:

(5)

where the elements of the square matrices ~ and S“ are
given by

(6)

These matrices are often referred to as mass and stiffness

matrices, respectively.

In practical computations, we build first the correspond-

ing T and S matrices for each triangle and then assemble

the matrices to obtain the global matrices ~ and ~. This

step is fully described elsewhere [4, pp. 16–32].

III. HERMITIAN APPROXIMATION POLYNOMIALS

Dividing the waveguide cross section into triangles, we

approximate the axial field components for each triangle

by

u = ~F,fl, (7)

and similar to (4) and (5) we define the matrices T and S.

The following transformation will map a triangle in the

xy plane with vertices at Pl(xl, yl), P2(x2, y2), and
I’3(x3, y3) onto the standard triangle lll(l., O.), 112(0., 1.),

and 113(0 .,0.) in the plpz plane:

x = X3 + ‘g13p1 + ‘$23p2

y = Y3 + 7?13P1 + ~23P2

where &m = Xk — ‘m and ~k~ = yk — y~.

Since this transformation is always possible, it is con-

venient to develop first the formulation for a standard

triangle and then to transform the result to a general

triangle. This procedure is particularly efficient when the T
and S matrices have to be computed for a general triangle.

In order to distinguish between the computations in the

xy plane and those in the p1p2 plane, we shall denote the

solution (7) in the p ~p2 plane by

N

u= ~ Gla,. (8)
i=l

Let us consider first the third-order polynomials. These

polynomials have ten coefficients (G,) corresponding to

the function values at the vertices and centroid and to the

first partial derivatives at the vertices. Denoting the func-

tion values by q, U2, and ZJ3at the vertices 1, 2, and 3,

respectively, and the value at the centroid by U4, the

coefficients G, will be defined as follows:

G,=ui, i=l,...,4

dul a U,
G =—

‘+4 i3p1
G =—

‘+7 ap”
i=l,2,3. (9)

Explicit expressions of the polynomials a, in terms of

PI, P2 for the standard triangle are given in Appendix I. It
is worth noting that the function u is uniquely interpolated

along a side of a triangle. Consequently, a unique u will

result on a common side of two triangles. This means that

the interpolating function ii is continuous over the triangu-

lar network and therefore has Co continuity. Note that the

transverse field components, given by the derivatives of ii,

are generally not continuous along the triangle sides.

A fifth-order polynomial has in general 21 coefficients

to be determined. Matching the function and its first- and

second-order derivatives gives 18 constraints. Here, the

three remaining constraints are obtained by requiring that

the normal derivatives u. be reduced to a third-degree

polynomial along each side of the triangle. It may be

shown [6, pp. 49–50] that in this case the partial deriva-

tives UY and u ~ are interpolated by a unique function

along each triangle side and therefore ii has Cl continuity.
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Denoting

i?u,

G,= U, G[+3= —
apl

G =s
‘+6 ap2

(?%, (3%, azu,
G= G

‘+9 apl apz
1+12—

ap;
G—,+ 15=

ap: ‘

i=l,2,3 (10)

we give explicit expressions of the polynomials a, in terms

of pl and pz for the standard triangle [6, p. 50] in

Appendix I. When the standard triangle is transformed

onto a general triangle, the normal to a side of the triangle

will not generally be transformed onto the normal of the

transformed side; consequently, the Cl continuity may be

destroyed. To preserve the Cl property, it is essential to

restrict the mesh elements to right-angle triangles (not

necessarily isosceles) so that if two right-angle triangles

share a hypotenuse they form a rectangle. We also require

that the standard triangle’s hypotenuse be transformed

onto the triangle’s hypotenuse. In this case, the normal to

the hypotenuse of the standard triangle will be mapped

onto the median to the triangle’s hypotenuse. Conse-

quently, along each common side of two triangles the

derivative, in a unique direction of either the median or the

normal to that side, reduces to a third-order polynomial

and therefore is uniquely determined. Taking into account

the uniqueness of the derivatives along the side direction,

we conclude that the Cl property is preserved. This implies

continuity of all field components across the waveguide.

IV. TRANSFORMATIONS FROM STANDARD TO

GENERAL TRIANGLE

Considering now a general triangle,

third-degree polynomials. Recalling (7),

10

u = ~ F,fi,
,=1

we define

au, au,
F—(+4= ax

F—1+7=
ay’

we first treat the

i=l,2,3. (11)

Applying the chain rule and using (7), (8), (9), and (11), we

obtain

B,=a,, i=l 4,. ...

fi,+4 = ‘$13%+4 ~~23%+7

J!+7 = q13a,+4 + q23a,+7,
i=l,2,3. (12)

Similarly, for fifth-degree polynomials, we have

18

,=1

au, au,
< = 11, F—1+3=

ax
<+6=—

ay’

i=l,2,3

azu, azu,
F =— F _—

‘+9 axay
1+12— = ~. (13)

axz 4+15

Using the chain rule and (10), we obtain

B,=%, i=l,2,3

1%+3 = $13%+3 ‘(23%+6

~1+6 = ‘%3%+3 + ~23a,+6

~,+9 = 2“ ‘$13q13a,+12 + 2 “ ‘$23q23a, +15

+ (’&’23~13 + ‘&3q23)az+9

~,+12 = ‘$?3ai+12 + $~3az+15 + ~13’$23a~+9

Bi+15 = q!3ai+12 + q~3ai+15 + V13~23ai+9. (14)

Either (14) or (12) may be abbreviated

A = t e,,al (15)
j=l

where

(~ = 10- cubic case

18- quintic case.

The quantities eij are defined by (12) or (14) for the third-

and fifth-degree cases, respectively.

Substituting the expression (15) into the first equation in

(6), we obtain

(16)
k=lm=l

where ~~ is an eldment of the mass matrix for the stan-

dard triangle and A is the area of the triangle. To obtain a

transformation for Ii we follow [4 pp. 81–82] and define

(17a)

(17b)

to obtain

3

k=]

where Ok is the inciuded angle at vertex k, and

H(aa, aal a~, aal
s;= —+ —–. —

Zi”ax ay ay )
dx dy. (19)
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Again, using the second equation in (6), we obtain

NN

S,, = ~ ~ elkejmS~m. (20)
k=lm=l

Employing a special code, the matrices T’ and Q(k) have

been evaluated analytically and the results are tabulated in

Appendix II. Using these tables and (16)-(19), the T and

s matrices of any triangle can be accurately and effec-

tively constructed.

As mentioned earlier, the global mass and stiffness

matrices are obtained by assembling the triangle elements

S,, and TJ.

V. BOUNDARY CONDITIONS

When using Hermitian polynomials, it is often necessary

to impose conditions on the derivatives of the function ii

at the boundaries. Considering first the Dirichlet boundary

conditions, we note that the condition Z = O along a seg-

ment implies that all the derivatives in the direction of the

segment vanish. If the direction is given by q = (qX, q,),

then

ii; = fixqx + ily?ly = 0. (21)

Similarly, the second-order derivatives are given by

-!! _ - 2_

‘m — ‘xx
.q:+2. tixy. qx. qy+fiyy. qy -o. (22)

We denote by ~d a vector with elements describing the

values of il and its partial derivatives at the nodes of the

entire mesh. Equations (21) and (22) represent dependence

between elements of ~~.

Next, we define a vector ~1 which includes that part of

~d consisting only of the independent elements. Then, it

follows that

F1 = Cfd (23)

where C is a matrix ~eadily ~btained from (21) and (22).

The global matrices T1 and SI corresponding to the inde-

pendent parameters may be obtained by computing first

the matrices ~d and & corresponding to the dependent

vector id; then by using (5) and (23) one may obtain the

desired result

fl = CTFDC

& = c=&c. (24)

The Neumann boundary conditions are natural and it is

not necessary to impose them at the boundaries. However,

including the conditions explicitly will result in a reduction
in the order of TI and S;. This process will increase the

functional value (2), and in this sense the approximate

solution is less accurate. However, many examples that we

have performed indicate that the reduction of order usu-

ally compensates for the loss in accuracy. Denoting by

~ = (~., .$,) the normal to the segment, we obtain the
following conditions:

iii = tixgx + tiy$y = o (25’)

fig = %x’$x%+%(tv% + ‘m”) + iqy’$y% = o (w

The matrices ~1, ~1 will then be computed from (24) with

TABLE I
COMPARISONBETWEENTEIO -MODE CUTOFFWAVELENGTH

IN A RECTANGULAR WAVEGUIDE WITH IMPOSED

BOUNDARY CONDITIONS

m n 10g liHI-~EX! lWI AL-AEX[

8 34 -4.9

8 49 -3.6

18 70 -6.2

18 100 -4.6

32 114 -7.1

TABLE II
COMPARISONBETWEENTEIO -MODE CUTOFF

WAVELENGTH IN A RECTANGULARWAVEGUIDE
WITH FREEBOUNDARYCONDITIONS

1
m n 10gl~~-AExI

8 54 -5.2

18 96 -6.3

32 150 -7.2

6– 12,7 mm M

4“

“--IT
Fig. 1. Geometry of double-ridged waveguide.

t

the appropriate matrix C.

VI. NUMERICAL EXAMPLES

Two numerical examples are given: rectangular wave-

guide and double-ridged waveguide.

Example 1: We consider the TE problem for a rectangu-

lar waveguide with sides a = 2 cm and b =1 cm. We

compare the computed cutoff wavelengths (in cm) for
Lagrangian third-order polynomials (A ~) and Hermitian

fifth-order polynomials (A ~1) with imposed boundary con-

ditions, to the exact ones (A ~x). The results are compared

for the TEIO mode and are given in Table I. The rectangle

has been partitioned to several meshes with m right-angle

triangles in each mesh. The order of i or ~ is denoted by

n. One can easily observe that in the Hermitian case, low

matrix dimensions give accurate results. This fact reduces

computation time as well as computer memory.

Next we assume Hermitian approximation but we as-

sume free boundary conditions. The eigenvalues so ob-

tained are denoted by A *F and are given in Table II.
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I 1 /1

F

< —— _. —.——.——. —
Fig. 2. Finite element refinement of a quarter double-ridged waveguide.

TABLE III
CONVERGENCEOF CUTOFFWAVELENGTH(IN MM) FORDOUBLE-RIDGED

WAVEGUIDE USING FEM WITH llBRMITIAN POLYNOMIALSAND

COMPARISON BETWEEN OTHER ANALYSES WITH IMPOSED

BOUNDARY CONDITIONS

Mode
AH1

Name n=27 n=88 n=126 n=164 from [1] from [2]
m=6 m=z 4 m=36 m=48

T810H 42.68 43.429 43.582 43.641 43.69 43.72

~20T
10.137 10.145 10.146 10.147 10.11 10.15

T8JOH 9.347 9.358 9.36 9.36 9.368 9.36

H-Hybrid; T-Trough.

Fig. 3. Electric field lines of TEIOH mode for a quarter double-ridged
waveguide.

It may be concluded that the reduction in matrix order

n when Neumann boundary conditions are imposed does
not significantly decrease the eigenvalue accuracy and it is

therefore convenient to impose them.

Example 2: In this second example, we consider a dou-

ble-ridged waveguide whose dimensions are shown in Fig.

1. Assuming fifth-degree Hermitian polynomials with im-

posed boundary conditions, we follow [7] and refine the

Fig. 4. Electric field lines of TE20T mode for a quarter double-ridged
waveguide.

Fig. 5. Electric field lines of TE30 H mode for a quarter double-ridged
waveguide.

TABLE IV
CONVERGENCEOF CUTOFFWAVELENGTH(IN MM) FOR

DOUBLE-RIDGF.DWAVEGUIDE USING FEM WITH
HERMITIAN POLYNOMIALSWITH FREE

BOUNDARYCONDITIONS

~~

m$,~
H–Hybrid; T–Trough.

mesh near the singularity (e.g., Fig. 2). The convergence,

for some modes, is demonstrated in Table III. The field

lines corresponding to those modes are given for a quarter

waveguide in Figs. 3–5.

In Table IV we demonstrate the convergence when free

boundary conditions are assumed. By comparing Tables

III and IV, it may be concluded that it is advantageous to

impose the Neumann boundary conditions.
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APPENDIX I

The Ten Hermitian Polynomials of Third Degree

al= 3p~ ‘7plpz ‘2P? +7P?P2 ‘7P1P;

LY2 = 3P; ‘@@2 ‘2.?7Z +YP?P2 ‘7P1P;

a3 =1–3p~ –3p~ –13p1p2+2p~ +2p;

+13plp~ + 13p~pa

ad = 27plp2 – 27pfp2 – 27P1PZ

as = (2p~p2 –2p@; –’2P?P2 – P? +P?)

a6 = (– p1p2 + p;p2 +2 J31p; )

a7 = (pl–2p~ + p; ‘3p1p2 +3pfp2+2p1p; )

(.Y8= (– p1p2 + pip; +2pfp2)

a9 = (2p1p2 – p; –2p:p2 +p; –2p1p; )

alo = (P2 –2P; + P; –3P1P2 +3p1p; +’2P?P2).

The 18 Hermitian Polynomials of Fifth degree

al = p~(lopl – 15p; +15p; +6p; –15p; –15plp;)

a2 = p;(lop2 – 15p; +15p; +6p; –15p; ‘15p~p2)

a3=l —Zxl-a2

a4 = p;(–4p1 +7p; –7.5p; –3p; +7<5p1p; +7.5p; )

as = plp;(3–2p2 –1.5pl –1.5p; + 1.5plp2)

ae = pl(l – 3p; –6p; + Sp; –6plp; +2p; –3p;

+9P;P; +6P1P;)

a, = p~p2(3–2pl –1.5p2 –1.5p~ +1.5plp2)

ag = p;( – 4p2 + 7p; – 7.5p; – 3p; + 7.5p; + 7.5p;p2)

CY9= p2(l – 3p~ –6p~ +8p~ –6p~p2 +2p~ –3p~

+9P?P; +6P;PJ

alo = p;p2(– 1 + pl +0.5p2 +0.5p; ‘0.5plp2)

all = plp:(–l + p2 +o.5p1 +o.5p; –o.5p1p2)

a~z =p1p2(l–2p1–2p2+ p: +p; +2p~pJ

(T13= p~(0.5pl – p; +1.25p; +0.5p; –1.25plp; –1.25P;)

ald = 0.25p;p;(l – pl + p2)

~15 = o.5p@ —3p~ +3p~ —3p; — p; +2p: +3p1p; )

al~ = 0.25p;p;(l + pl – p2)

al~ = p;(0.5p2 – p; + 1.25p; + 0.5p; – 1.25p~ – 1.25p;p2)

ZY18= 0.5p;(1 ‘3p2 +3p; ‘3p~ – p; +2p; +3p;p2).

APPENDIX II

Table V–VIII give the matrices T and Q for standard

triangles for third-and fifth-degree Hermitian polynomials.

As the matrices are symmetric, we give only the upper

triangle of T and Q2 and the lower triangle of Ql and Q3.

TABLE V
Cubic T AND Q1 MATRICES FOR STANDARD TRIANGLE

1252 28 28 549 -212 36 36 106 -8 ’26

12s2 28 560 -8 106 ’26 36 -212 34

49

70 199

70 1 199

-189 -.270 -270 729 64

-t b -20 -20 S* b

74 35 5 -s4 -4 7

14 s 35 -54 -4 1 7

7 22 -2 -27 -z s -1 7

-1 4 -38 -2 54 4 -7 -1 -5 10

0 -3 3 0 0 0 0 0 0 3

Common denominators – T: 10 080; Q1: 90.

TABLE VI
Cubic Q2 AND Q3 MATRICES FOR STANDARD TRIANGLE

199 70 1 -270 -38 22 -3 3s -20 5

49 70 -189 -*4 7 0 14 -14 14

199

1 199

70 70 49

’270 -270 -189 729

-38 -2 -1 4 56 10

-3 3 0 0 0 3

22 -2 7 ’27 -5 0 7

3 -3 0 0 -3 0 0 3

-2 -38 -14 54 t -3 f o 10

-2 22 7 -27 t o -5 0 -5 7

Common denominator for Q2 and Q3: 90.
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TABLE VII
Quintic T AND Q* MATRICES FOR STANDARD TRIANGLE

1286400 343200 429600 -320640 90360 112080 175S60 -120000 56640 -34840 ‘21640 8360 29960 6460 10620 9460 16240 3900

1286400 429600 ‘120000 175560 56640 90360 ‘320660 112080 ‘21640 ‘34840 8360 t4240 9460 3900 6460 29960 10620

1675200 ‘145440 66720 243120 66720 ‘145440 243120 ‘17440 ‘17440 20240 76520 2560 17760 2560 16520 17f60

88iO0 ‘30540 ‘36600 ‘49620 41328 ‘20208 10420 7260 ‘2860 ‘8780 ‘2110 ‘3390 ‘2770 ‘4644 ‘1434

14400
33384 11736 22848 ‘49620 15552 ‘5304 ‘6928 1.540 3510 2064 906 1632 5010 1398

‘3600 410400
47424 15552 ‘20208 31176 ‘3936 ‘3712 3520 4020 516 3744 588 2424 2076

‘10800 ‘406600 4*7600
33384 ‘30540 11736 ‘6928 ‘5304 1540 50?0 1632 J398 2064 3310 906

‘7200 1800 5400 3600
88800 ‘36600 7260 10420 ‘2860 ‘4844 ‘2770 434 ‘2*IO ‘8780 ‘3390

‘3240 74160 ‘7ti920 1620 17784
47424 ‘3~12 ‘3936 3520 2626 588 2076 5~6 4020 3744

‘3960 ‘72360 76320 1980 ‘16164 18144
3496 1232

5040
’396 ‘7090 ’364 ’346 ’428 ’830 ’242

35660 ‘40680 ‘2520 10836 ‘13356 33984
1496 ’396 ’830 ’428 ‘24.? ’366 ‘1090 ’546

-7200 ‘9.1.s00 99000 3600 ‘17100 20700 ‘14040 41040
330 66 264 66 330 264

5760 ‘51840 46080 -Zaao -74f3 4536 4896 4320 42624

‘1 680 -5880 7560 840 ‘1692 2532 -5328 2760 ‘1632 976
t42 43 fzz 285 53

’720 -12120 12840 360 ‘2868 3228 ‘2712 4440 3?2 504 656
312 S3 177 134

600 -5400 4800 -300 -1020 720 660 900 3840 -220 100 480
235 43

1200 -300 -900 ’600 ’270 -330 420 ‘6oO 480 -140 ’60 50 100

-840 6060 ‘5220 420 1674 ‘1254 936 -1140 -816 -112 ’228 -110 -70 1’84

’360 ‘5760 6120 180 -1404 1584 ‘1356 1740 336 252 288 60 -30 -114 146

’360 4740 ‘4380 180 1446 -1266 2064 -1380 -384 -288 ’272 -70 -30 1S6 ’126 224

1500 7200 ‘8700 -750 *320 ‘2070 1710 -4230 360 -370 -470 -30 12s 55 -180 12s Slo

660 ‘2940 2280 -330 ’426 96 366 -330 2904 -122 -38 220 55 ’61 6 -19 11s 264

Common denominators — T: 13305 600; Q1: 604800.

TABLE VIII
Quintic Q* AND Q3 MATRICESFORSTANDARDTRrAN@E

410400 ‘3600 ‘406800 -91800 3S640 -51840 74160 1800 -72360 ‘12120 ‘58S0 ‘S400 7200 6740 ‘2960 6060 ’300 ‘5760

14400 -10800 ‘7200 5040 5760 -3240 -72oo ‘3960 ’720 ‘162.0 600 1S00 ’360 660 -840 1200 ’360

99000 ‘40660 46080 ‘70920 S400 76320 12840 7S60 4800 ‘8700 ‘6380 22KI0‘5220 ’900 6120

40327,0 41040 -14040 4520 ‘171OO 3600 20700 +640 2760 900 ‘4230 ‘1380 ’330 ‘1140 ’600 1740

‘33120u 403200 4896 10836 -2S20 ‘13359 ‘2712 ‘5328 660 1710 2064 366 936 420 ‘1356

‘72000 ‘72000 144000 ‘7416 ‘2880 4536 312 +632 3840 360 ’364 2904 ’616 460 336

‘88200 84600 3600 39240 17784 1620 ‘16164 ‘2868 ‘1692 ‘~020 1320 1446 ’626 1674 ’270 ‘f404

‘39600 7200 32400 2700 31824

27000 ‘63000 36000 ‘14220 5076

7200 ‘39600 32400 ‘23z2O 4896

84600 -88200 3600 ‘16920 ‘23220

‘63000 27000 36000 16020 11124

600 7800 ‘8400 4080 ‘1932

7800 600 -8400 0 ‘6348

-4800 -4800 9600 600 1800

6600 ‘7800 1200 -3930 480

-1500 300 1200 -300 1554

3900 -5100 1200 -1710 -54

300 -1500 1200 ‘1 260 6,06

‘7800 6600 1200 1110 2940

-5100 3900 1200 1410 954

42624 720 ‘2070 ‘1266 96 ‘1254 ’330 1S84

17124 31824 -470 -272 -38 -228 ’60 288

96020 2700 39240 -370 ’288 -122 -1$2 -140$ 252

‘2!4624 S076 ‘14220 42624 50 60

‘2748 ‘6348 o ‘1452 1416

‘14S2 -1932 4080 ‘2748 624 1416

2600 ~ 000 600 2400 ‘480 -480 720

1890 2940 II*O ‘1290 -610 -190 20 460

246 606 ‘1260 354 ‘192 ’348 60 85 114

2904 954 1410 ‘2304 -218 -2 40 205 11 264

354 1554 r300 -246 -348 -f9z . 60 175 66 29 114

‘1 290 480 -3930 1890 -190 ’610 20 -20 175 ’125 85 460

‘2304 -54 -1710 2904 -2 ’218 40 +25 29 ’204 It 20s 264

Common denominator for Q2 and Q3: 604800
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