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An Efficient Finite Element Method
for Nonconvex Waveguide Based on
Hermitian Polynomials

MOSHE ISRAFEL, MEMBER, IEEE, AND RUTH MINIOWITZ

Abstract —An efficient finite element method (FEM) in waveguide
analysis is described. The method uses Hermitian polynomials to inter-
polate the field component (E, or H,) and some of its derivatives at the
nodal points, rather than the field components, as in the Lagrangian
interpolation case. Element matrices, for a standard triangle, are given for
third- and fifth-degree Hermitian polynomials. The appropriate transfor-
mations that relate the element matrices of a general triangle to the
standard triangle element have been derived. Compared to the broadly used
Lagrangian interpolation FEM, the Hermitian FEM has the following
advantages:

1) a significant reduction of the matrix order needed to compute the
eigenvalues and eigenfunctions;

2) smooth axial components (E, or H,) and continuous transverse field
components; '

3) low-cost refinement of the mesh near nonconvex corners of the
waveguide.

These advantages are illustrated by comparing the FEM, with Hermitian
polynomials solution, to other solutions for rectangular and ridged wave-
guides. '

I. INTRODUCTION

N DESIGNING waveguide devices, it is helpful to

know the complete eigenvalue spectrum and the corre-
sponding field solution. There are several approaches to
solve waveguide problems (see, for example, [1]-[4]). The
finite element method (FEM) [4] is a versatile method that
we consider in this paper.

The first-order polynomial FEM is a broadly used
method [3]. However, the method is uneconomical for
accurate field computation requirements; consequently,
most works using first-order polynomials concentrate on
finding the eigenvalue spectrum, rather than the modal
field. In contrast, the high-order Lagrangian polynomials
FEM for triangular elements [4, pp. 88-90], when applied
to convex waveguides, leads to substantial saving in com-
puter storage and time. However, when sharp corners exist,
the field singularities at these corners cause difficulties in
obtaining a rapidly converging solution. In fact, numerical
experiments relating to singularities in transmission lines
[7] indicate that when the triangular mesh is refined, the
convergence is only marginally improved for the higher
order polynomials. Although the variational analysis given
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in [1] is efficient in the singular case, the analysis described
there is specific to ridged waveguides. Unlike the varia-
tional analysis, the FEM has the advantage of being ap-
propriate to an arbitrary waveguide shape.

In this paper we elaborate on the Hermitian polynomials
and demonstrate their usefulness as far as efficiency is
concerned. The efficiency mainly stems from the continu-
ity requirements, not only on the function E, or H,, as in
the Lagrangian case, but also on the first- and possibly
second-order derivatives. In fact, these requirements re-
duce the order of the matrix eigenvalue problem. With this
reduction, one is able to work with higher order polynomi-
als with a cost similar to that of Lagrangian lower order
polynomials. As an example [5, p. 85] if we consider a
square which has been partitioned into 2n” right-angle
triangles, the matrix order corresponding to Lagrangian
third-degree polynomials is about 9n°. An interpolation
with third-degree Hermitian polynomials which imposes
continuous first-order derivatives at the nodes reduces the
order to about 5x2, but gives an error similar to the case
with Lagrangian third-order polynomials. If we use re-
duced fifth-order Hermitian polynomials and require first
and second continuous derivatives, the resulting matrix
order is approximately only about 6n% This significant
reduction in the number of free parameters allows working
with high-order polynomials when grid refinements are
necessary, as in the case of sharp corners. The use of
fifth-degree Hermitian polynomials has the additional ad-
vantage that it is possible to find an approximate solution
which belongs to C'. This fact will cause the field compo-
nents to be continuous and the field lines to be smooth.

In comparison to the advantages mentioned, the disad-
vantage when using Hermitian polynomials is the incon-
venience in the rather lengthy mathematical expressions
involved. The problem of performing the appropriate in-
tegrations of these expressions over a single triangle is a
discouraging stage. To overcome this difficulty, we have
performed the integrations analytically for a standard tri-
angle for third- and fifth-degree polynomials. The results
are tabulated in Appendix II. We have also derived simple
transformations that express the required information on a
general triangle in terms of the standard triangle. Using
these transformations and tables, the FEM with Hermitian
polynomials is easily and effectively implemented.

0018-9480,/87 /1100-1019501.00 ©1987 IEEE
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II. VARIATIONAL FORMULATION

The axial field components in propagating modes
of a uniform, perfectly conducting waveguide satisfy the
Helmholtz equation

(1)

(v>+k2)a=0
where k; is the cutoff wavenumber,

a? a2
2 + —
VT3 y?
and i@ stands for the axial field components E, or H, for
TM or TE modes, respectively.

For TE modes, (1) is subject to Neumann boundary
conditions, and for TM modes it is subject to Dirichlet
boundary conditions. The FEM uses a variational formula-
tion in which the functional

1@)=%/[Uvﬁf—k%aﬂdm@

is stationary.

While the Dirichlet boundary conditions should be im-
posed on the trial function, #, the Neumann boundary
conditions are natural and it should not necessarily be
imposed.

We construct an approximate solution that can be writ-
ten as follows:

(2)

]

i= Y Fp. (3)

This solution is a combination of trial functions E,(x, )
the E’s are parameters representing the values of the
solution and its derivatives at mesh points.

If one substitutes (3) into (2), one obtains

.1 . f o~
1(F) =5 L LEE [ [ V9B, dxdy
1y

(4)

Denoting by F the column vector of the values I:“l, (4) can
be written in matrix form as follows:

e 1 kR .
I(F)=EFTSF———2—FTTF (%)
where the elements of the square matrices T and S are
given by

1~ f 88 o

:{,=ffvﬁ,v/§dxdy. (6)

These matrices are often referred to ds mass and stiffness
matrices, respectively.

In practical computations, we build first the correspond-
ing T and S matrices for each triangle and then assemble
the matrices to obtain the global matrices 7 and S. This
step is fully described elsewhere [4, pp. 16-32].
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Dividing the waveguide cross section into triangles, we
approximate the axial field components for each triangle
by

HERMITIAN APPROXIMATION POLYNOMIALS

(7)

and similar to (4) and (5) we define the matrices T and §.

The following transformation will map a triangle in the
xy plane with vertices at Py(xy, y;), P,(x,, »,), and
P;(x;, y;) onto the standard triangle 11,(1.,0.), I1,(0.,1.),
and II5(0.,0.) in the p, p, plane:

u=)Fp,

x=x3+ &30+ €D
y=y;tmsp1+ 1P

where £, =x, —x,, and 1, = Y, — V.-

Since this transformation is always possible, it is con-
venient to develop first the formulation for a standard
triangle and then to transform the result to a general
triangle. This procedure is particularly efficient when the T
and § matrices have to be computed for a general triangle.

In order to distinguish between the computations in the
xy plane and those in the p, p, plane, we shall denote the
solution (7) in the p, p, plane by

N
u= Y, Ga,. (8)

i=1

Let us consider first the third-order polynomials. These
polynomials have ten coefficients (G,) corresponding to
the function values at the vertices and centroid and to the
first partial derivatives at the vertices. Denoting the func-
tion values by u,, u,, and u; at the vertices 1, 2, and 3,
respectively, and the value at the centroid by u,, the
coefficients G, will be defined as follows:

G=u, i=1,..,4
du, du, 193 9
+4 apl +7 apz’ 1=1,2,5. ( )

Explicit expressions of the polynomials «, in terms of
P1, P for the standard triangle are given in Appendix I. It
is worth noting that the function u is uniquely interpolated
along a side of a triangle. Consequently, a unique # will
result on a common side of two triangles. This means that
the interpolating function # is continuous over the triangu-
lar network and therefore has C° continuity. Note that the
transverse field components, given by the derivatives of i,
are generally not continuous along the triangle sides.

A fifth-order polynomial has in general 21 coefficients
to be determined. Matching the function and its first- and
second-order derivatives gives 18 constraints. Here, the
three remaining constraints are obtained by requiring that
the normal derivatives u, be reduced to a third-degree
polynomial along each side of the triangle. It may be
shown [6, pp. 49-50] that in this case the partial deriva-
tives u, and u, are interpolated by a unique function
along each triangle side and therefore # has C! continuity.
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Denoting Similarly, for fifth-degree polynomials, we have
18
du, du, ‘ =YY F
G1=u1 +3= 4 G1+6=_ ! ,gl Iﬁl
Ip, ap,
F F du, r du,
azul (921,{, azul U, +3 9x +6 3y ’
+9 8plap2 +12 ap% 1+15 ap l=1,2,3
9%u, 9%u, d%u

i=1,2,3 (10) Fio= Ixdy E+12=a—x2_ E+15=’5y_2l- ’(13)

we give explicit expressions of the polynomials «, in terms Using the chain rule and (10), we obtain
of p, and p, for the standard triangle [6, p. 50] in

. . . =q, i=1,2,3
Appendix 1. When the standard triangle is transformed hi=a
onto a general triangle, the normal to a side of the triangle Biis=§130,,5+Exn, 4
will not generally be transformed onto the normal of the 8

; o = M13¢, 43 F Ny
transformed side; consequently, the C! continuity may be vre = 33 T Maaties
destroyed. To preserve the C! property, it is essential to Biio=2Em3®s 12 +2 ExsMas,s s
restrict the mesh elements to right-angle triangles (not (g +¢ )a
necessarily isosceles) so that if two right-angle triangles M3 T S13M23) Fivo
share a hypotenuse they form a rectangle. We also require B = 512304,. vzt 5, s+ Eéna, o
that the standard triangle’s hypotenuse be transformed
onto the triangle’s hypotenuse. In this case, the normal to Bir1s =M 12 + Mo 15+ Mg (14)

the hypotenuse of the standard triangle will be mapped Either (14) or (12) may be abbreviated
onto the median to the triangle’s hypotenuse. Conse-

quently, along each common side of two triangles the B=1Y e .a (15)
derivative, in a unique direction of either the median or the
normal to that side, reduces to a third-order polynomial

and therefore is uniquely determined. Taking into account where ‘ .

the uniqueness of the derivatives along the side direction, Ne {10 - cul‘)lc.case

we conclude that the C? property is preserved. This implies 18 - quintic case.

continuity of all field components across the waveguide. The quantities e,, are defined by (12) or (14) for the third-

and fifth-degree cases respectively.
Substituting the expression (15) into the first equation in

IV. TRANSFORMATIONS FROM STANDARD TO (6), we obtain

GENERAL TRIANGLE

N N
T, =24 e e T (16)
Considering now a general triangle, we first treat the / kgl m};l Emk

third-degree polynomials. Recalling (7), where T’ is an element of the mass matrix for the stan-

dard trlangle and A is the area of the triangle. To obtain a

u=Y Fp transformation for .§ we follow [4 pp. 81-82] and define
1 da,
o= [ [ 2% 55, (172)
we define P2 OP
da ‘
F=u, i=1,...,4 a"ffapl'g;dpldpz (17b)
du du da, Ja,
F.o=— F,,=—, i=123 (11 0P = — || = -2 dpidp, (17c
4T T +7 3y l (11) f/( ap, 3]’2)( ap, 8p2) Ip, dp, (17c)
Applying the chain rule and using (7), (8), (9), and (11), we to obtain ;
obtain s - T 0Weot, (18)
B,=qa, i=1,...,4 k=1

where 6, is the included angle at vertex k, and

da, (904 30& da, Icd (19)
5=\ 5 ax ax ay oy Y

Biia=813044T 8007

Bii7=mM30 4t N30, 47, i=1,2,3. (12)
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Again, using the second equation in (6), we obtain

N N
— ’
Stj_ Z Z ezkeijkm‘
k=1m=1

(20)

Employing a special code, the matrices T’ and Q) have
been evaluated analytically and the results are tabulated in
Appendix II. Using these tables and (16)—(19), the T and
S matrices of any triangle can be accurately and effec-
tively constructed.

As mentioned earlier, the global mass and stiffness
matrices are obtained by assembling the triangle elements
S, and T; .

V. BoUNDARY CONDITIONS

When using Hermitian polynomials, it is often necessary
to impose conditions on the derivatives of the function #
at the boundaries. Considering first the Dirichlet boundary
conditions, we note that the condition & =0 along a seg-
ment implies that all the derivatives in the direction of the
segment vanish. If the direction is given by n=(n,.1,),

then
(21)

37

dp=am,+im,=0.

Similarly, the second-order derivatives are given by

v dd

u"l"?

=f, M+ 2 dy nen, i, =0 (22)

We denote by F, a vector with elements describing the
values of # and its partial derivatives at the nodes of the
entire mesh. Equations (21) and (22) represent dependence
between elements of F,.

Next, we define a vector F, which includes that part of
F, consisting only of the independent elements. Then, it
follows that

F,=CF, (23)

where C is a matrix readily obtained from (21) and (22).
The global matrices 7, and S, corresponding to the inde-
pendent parameters may be obtained by computing first
the matrices 7, and S, corresponding to the dependent
vector F,; then by using (5) and (23) one may obtain the
desired result
1,=C"T,C
S, =C78,C. (24)
The Neumann boundary conditions are natural and it is
not necessary to impose them at the boundaries. However,
including the conditions explicitly will result in a reduction
in the order of T; and ;. This process will increase the
functional value (2), and in this sense the approximate
solution is less accurate. However, many examples that we
have performed indicate that the reduction of order usu-
ally compensates for the loss in accuracy. Denoting by
E=(¢,.¢ ) the normal to the segment, we obtain the

following conditions:
ip=ub +i,E,=0

(25)

aé’" = axx xnx+ axy(gynx + gx,r’y) + ay}.gy'f)y = 0. (26)

The matrices 7, S, will then be computed from (24) with
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TABLEI
COMPARISON BETWEEN TE,;;-M0ODE CUTOFF WAVELENGTH
IN A RECTANGULAR WAVEGUIDE WITH IMPOSED
BoUNDARY CONDITIONS

o u Log Ay~ Ex] Log| AL Aex
8 34 ~4.9
8 49 -3.6
18 70 ~6.2
18 100 -4.6
32 114 -7.1
TABLE II

COMPARISON BETWEEN TE, ;-MODE CUTOFF
WAVELENGTH IN A RECTANGULAR WAVEGUIDE
WITH FREE BOUNDARY CONDITIONS

m n T log | App=rgx |
]
8 54 -5.2
18 96 -6.3
32 150 -7.2
-~ - st 127 mm Tt »
—P 2.54 om ja—r
[
Yy
g
5 g
< g
fel el
~ -
o S
‘
Fig. 1. Geometry of double-ridged waveguide.

the appropriate matrix C.

VI. NUMERICAL EXAMPLES

Two numerical examples are given: rectangular wave-
guide and double-ridged waveguide.

Example 1: We consider the TE problem for a rectangu-
lar waveguide with sides a=2 cm and b=1 cm. We
compare the computed cutoff wavelengths (in cm) for
Lagrangian third-order polynomials (A ;) and Hermitian
fifth-order polynomials (A ;) with imposed boundary con-
ditions, to the exact ones (A ;). The results are compared
for the TE |, mode and are given in Table I. The rectangle
has been partitioned to several meshes with m right-angle
triangles in each mesh. The order of T or § is denoted by
n. One can easily observe that in the Hermitian case, low
matrix dimensions give accurate results. This fact reduces
computation time as well as computer memory.

Next we assume Hermitian approximation but we as-
sume free boundary conditions. The eigenvalues so ob-
tained are denoted by A, and are given in Table II.
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Fig. 2. Finite elementA refinement of a quarter double-ridged waveguide. ~ Fig. 4. Electric field lines of TE»T mode for a quarter double-ridged
: : waveguide.
TABLE IIi

CONVERGENCE OF CUTOFF WAVELENGTH (IN MM) FOR DOUBLE-RIDGED
WAVEGUIDE USING FEM WITH HERMITIAN POLYNOMIALS AND

COMPARISON BETWEEN OTHER ANALYSES WITH IMPOSED
BOUNDARY CONDITIONS
Mode )‘HI
Name n=27 . n=88 n=126 n=164 from [1]]| from (2]
n=6 n=24 n=36 m=48
TE;QH  [42.68 43.429 | 43.582 | 43.641 43.69 43,72
TEon 10.137 10.145 10.146 10.147 10.11 10.15 .
TEqgH | 9.347 9.358 9.36 9.36 9.368 9.36
H-Hybrid; T-Trough.
FYYTIVY ]
, IREEEE i
% R i
\ EEREEE i
\‘ P i
. 150800 Mok kb s %
Fig. 5. Electric field lines of TE;, H mode for a quarter double-ridged
waveguide.
N ’ ’
\ TABLE IV :
N N CONVERGENCE OF CUTOFF WAVELENGTH (IN MM) FOR
o Y DoUBLE-RIDGED WAVEGUIDE USING FEM wiTH
N * HERMITIAN POLYNOMIALS WiTH FREE
NOX ) BOUNDARY CONDITIONS
\ A
\l \\ Mode Agr )
" NV Name |n=37 n=108 n=150 n=192
! Voo § m=6 - =24 n=36 m=48
i A
Vb TEgH [42.76 43.44 43.59 43,645
; vy LT .
v '. '7 I 2 TEpT |10.138 10.145 10.147 10.147
Fig. 3. Electric field lines of TE;oH mode for a quarter double-ridged TEjlh | 9.349 9.358 9.36 9.36
' waveguide. H-Hybrid; T-Trough.

It may be concluded that the reduction in matrix order
n when Neumann boundary conditions are imposed does
not significantly decrease the eigenvalue accuracy and it is
therefore convenient to impose them.

Example 2: In this second example, we consider a dou-
ble-ridged waveguide whose dimensions are shown in Fig.
1. Assuming fifth-degree Hermitian polynomials with im-
posed boundary conditions, we follow [7] and refine the

mesh near the singularity (e.g., Fig. 2). The convergence,
-for some modes, is demonstrated in Table III. The field
lines corresponding to those modes are given for a quarter
waveguide in Figs. 3-5.

In Table IV we. demonstrate the convergence when free
boundary conditions are assumed. By comparing Tables
I1T and IV, it may be concluded that it is advantageous to
impose the Neumann boundary conditions.
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APPENDIX I
The Ten Hermitian Polynomials of Third Degree

o = 3]’% i) 2923 ‘21’% +7P%P2 +7P1P%
ay=3p} —Tp\p, —2p3 +pips +7p1P3
a;=1-3p} —3p2 —13p, p, +2p1 +2p;
+13p, p; +13pip,

a,=21p,p, —27P%P2 - 27]’11’%

as=(2p1p, —2p1pi —2pipy— Pi+ PY)

ag= (= p1ps+ pip, +2p1p3)
ay=(p1—2pi+pi—3p1p,+3piP2 +2p1p3)
ag=(— pipa+p1pi +2pipy)
ag=Q2pi1p,—P3—2pips+ P3 —2p1P3)
o= (P, —2p3+ p3 =3P\ P2 +3p1P3 +2p1Dy).

The 18 Hermitian Polynomials of Fifth degree
a, = pi(10p, —15p7 +15p3 +6p3 —15p3 —15p, p3)
ay = p3(10p, —15p3 +15p1 +6p3 —15p1 —15p3p,)
a;=1—-a;,—a,
ay=pi(—4p,+Tpi —7.5p3 =3pi +7.5p, p; +7.5p3)
as=p,p3(3—2p,—1.5p, = 1.5p7 +1.5p, p;)

5= py(1-3p —6p%3+ 8pi —6p,p; +2p; —3pt
+9pip; +6p.p3)

a;= P%Pz(?’ —2p,—15p,~1.5p; +1.5p, p,)
ag = p3(—4p, +7p; = 7.5p; —3p3 +7.5p1 +7.5p1p,)
ay=p,(1-3p7 —6p3 +8p3 —6pip, +2p7 —3p;
+9p1p; +6p1p,)
o= pipy(—=1+ p;+0.5p,+0.5p; —0.5p, p,)
ay = ppy(—1+ p, +0.5p, +0.5p7 —0.5p, p,)
ay, = p1py(1=2p,—2p, + pi + Py +2p1p))
a;;=p3(0.5p, — p? +1.25p3 +0.5p3 —1.25p, p3 —1.25p3)
a,=025p1p3(1— py+ ps)
a5 =0.5pF(1—3p; +3p7 —3p3 — pi +2p3 +3p1p3)
a1=025pip3(1+ py = p,)
o= p3(0.5p, — p5 +1.25p3 +0.5p3 —1.25p3 —1.25p3p,)
ayy = 0.5p3(1—3p, +3p3 —3pt — p3 +2pi +3pipy).

ApPENDIX 11

Table V-VIII give the matrices T and Q for standard
triangles for third-and fifth-degree Hermitian polynomials.
As the matrices are symmetric, we give only the upper
triangle of T and Q? and the lower triangle of Q' and Q°.
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TABLE V
Cubic T AND Q' MATRICES FOR STANDARD TRIANGLE

1252 28 28 540 ~212 34 34 106 -3 =26

1252 28 540 -8 106 =26 34 -212 34

] -3 3 a [ ] ] 0 ] 3

Common denominators — T: 10 080; Q*: 90.

TABLE VI
Cubic Q% AND Q° MATRICES FOR STANDARD TRIANGLE

199 70 1 =270 -38 22 -3 35 =20 5
49 70 -1389 -14 7 "] 14 ~14 14

3 5 =20 35

0 ~54 54 ~54

0 -7 4 -1

0 H -2 -1

3 0 o 0

-2

-3 '3 0 0 [ 3
22 -2 7 =27 t-] [}
3 -3 0 0 -3 0
-2 38 =14 54 1 -3 1 0 10
-2 22 7 =27 1 a =5 *] ~5 ?

Common denominator for 0% and @3: 90.
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TABLE VII
Quintic T AND Q' MATRICES FOR STANDARD TRIANGLE

1286400 343200 429600 -320640 90360 112080 175560 ~120000 56640 -34840 =21640 8360 29960 6460 10620 9460 14240 3900
1286400 429600 -120000 175560 56640 0360 -320640 112080 -21640 =34840 8340 14240 9460 3900 6460 29960 10620
1675200 ~145440 66720 243120 66720 =145440 263120 =17440 =17440 20240 16520 2560 17160 2560 16520 17160
88800 -30540 ~36600 -49620 41328 ~20208 10420 7260 -2860 -8780 -2110 -3390 =2770 -4844 -1434
14400
33384 11736 22848 -49620 15552 =5304 =-6928 1540 3510 2064 906 1632 S010 1398
-3600 410400
47424 15552 -20208 31176 =3936 =3112 3520 4020 516 3744 588 2424 2076
~10800 -406800 417600
33384 ~-30540 11736 =6928 =5304 1540 5010 1632 1398 2064 3510 906
-7200 1800 5400 3600
88800 -36600 7250 10420 -2860 —-4844 =2770 434 =2110 -8780 -3390
-32640 74160 -70920 1620 17784
47424 -3112 =3935 3520 2424 SB88 2076 516 4020 3744
-3960 ~-72360 76320 1980 -156164 18144
1496 1232 =396 -1090 =~364 =346 =428 =830 =242
5040 35640 =40680 =-2520 10836 -13356 33984
1496 =396 =830 =428 =242 =364 -1090 =346
-7200 -91800 99000 3600 -17100 20700 =14040 41040
: 352 330 66 266 66 330 264
5760 ~-51840 46080 =—2880 =-7418 4536 4896 4320 42624
900 235 365 285 S6Z 177
-1680 -5880 7560 840 -1692 2532 =-5328 2760 ~-1632 976
142 43 122 285 53
-720 -12120 12840 360 =-2868 3228 ~2712 4440 312 504
600 -5400 4800  -300 -1020 720 660 900 3840 =220
1200 -300 -900  -600 -270 -330 420 <600 480 ~-140
-840 6060 ~5220 420 1674 -1254 936 ~1140 =316 ~-112
-360 -5760 6120 180 -1404 1584 =-1356 1740 336 252
-360 4740  -4380 180 1446 -1266 2064 =1330 <-384 -288
1500 7200 -8700  -750 1320 ~2070 1710 -4230 360 -370 =470 =30 125 55 =180 125 $10
660 -2940 2280  -330 426 96 366  -330 2904 -122 =38 220 55 <=6l 6 =19 115 264
Common denominators — T: 13 305 600; Q': 604 800.
TABLE VIII
Quintic Q? AND Q® MATRICES FOR STANDARD TRIANGLE
410600 -3600 406800 -91800 35640 ~51840 74160 1800 -72360 -12120 =5880 -5400 7200 4740 -2940 6060 =300 -5760
14400 ~-10800 ~-7200 5040 5760 =-3240 -7200 -3960 =720 =-1680 600 1500 =360 660 -840 1200 ~360
417600 99000 -40680 46080 ~70920 5400 76320 12840 7560 4800 -8700 -4380 2280 -5220 -900 6120
403200 41040 -14040 4320 ~17100 3600 20700 4440 2760 900 =4230 =1380 =330 ~1140 =600 1740
=331200 403200 33984 4896 10836 ~-2520 -13356 -2712 -5328 660 1710 2064 366 936 420 -1356
-72000 =72000 144000 62626 =-7416 -2830 4536 312 ~-1632 3840 360 <-384 2904 -816 480 336
~88200 84600 3600 39240 17786 1620 -16166 =-2868 =-1692 =1020 1320 1446 =426 1674 =270 -1404
-39600 7200 32400 2700 31824 3600 1980 360 840 =300 =750 180 =330 420 -600 180
27000 -63000 36000 =-14220 5076 42624 18144 3228 2532 720 -2070 -1266 96 =1254 =330 1584
7200 -39600 32400 =-23220 4896 11124 31824 656 S04 100 =470 -272 ~38 -228 =60 288
84600 =-88200 3600 -16920 -23220 16020 2700 39240 976 =~220 ~-370 -288 -122 ~112 -~140' 252
-63000 27000 36000 16020 11124 =-24624 5076 -14220 42624 480 -30 ~-70 220 -110 50 60
600  T7BO0 ~8400 4080 ~1932 =2748 =-6348 0 -1452 1416 510 125 115 53 125 -180
7300 600 -8400 0 -6348 =1452 =-1932 4080 =-2748 624
-4800  -4800 9600 600 1800 2400 1800 600 2400 -480
6600 -7800 1200 -3930 480 1890 2940 1110 ~1290 -610
-1500 300 1200 -300 1554 246 606 -1260 354 =192
3900 =5100 1200 «1710 -S54 2904 954 1410 =2304 -218
300 -1500 1200 ~-1260 606 354 1554 =300 246 =348
-7800 6600 1200 1110 2940 =-1290 480 =3930 1890 =190 =610 20 =20 1?5 =125 85 460
-5100 3900 1200 1410 954 ~2304 =S4 =1710 2904 -2 =218 40 =125 29 =206 11 205 264

1025

Common denominator for Q% and Q3: 604 800.
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